首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10064篇
  免费   1900篇
  国内免费   963篇
电工技术   528篇
技术理论   1篇
综合类   514篇
化学工业   969篇
金属工艺   281篇
机械仪表   1479篇
建筑科学   151篇
矿业工程   111篇
能源动力   134篇
轻工业   503篇
水利工程   42篇
石油天然气   712篇
武器工业   154篇
无线电   3472篇
一般工业技术   1939篇
冶金工业   111篇
原子能技术   501篇
自动化技术   1325篇
  2024年   26篇
  2023年   277篇
  2022年   318篇
  2021年   496篇
  2020年   521篇
  2019年   453篇
  2018年   502篇
  2017年   541篇
  2016年   591篇
  2015年   605篇
  2014年   713篇
  2013年   667篇
  2012年   802篇
  2011年   822篇
  2010年   580篇
  2009年   572篇
  2008年   562篇
  2007年   579篇
  2006年   492篇
  2005年   383篇
  2004年   378篇
  2003年   298篇
  2002年   267篇
  2001年   197篇
  2000年   205篇
  1999年   178篇
  1998年   143篇
  1997年   136篇
  1996年   139篇
  1995年   74篇
  1994年   90篇
  1993年   73篇
  1992年   54篇
  1991年   43篇
  1990年   37篇
  1989年   29篇
  1988年   16篇
  1987年   11篇
  1986年   14篇
  1985年   13篇
  1984年   10篇
  1983年   9篇
  1982年   1篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1959年   2篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
1.
针对高帧频、全局曝光和光谱平坦等成像应用需求,设计了一款高光谱成像用CMOS图像传感器。其光敏元采用PN型光电二极管,读出电路采用5T像素结构。采用列读出电路以及高速多通道模拟信号并行读出的设计方案来获得低像素固定图像噪声(FPN)和非均匀性抑制。芯片采用ASMC 0.35μm三层金属两层多晶硅标准CMOS工艺流片,为了抑制光电二极管的光谱干涉效应,后续进行了光谱平坦化VAE特殊工艺,并对器件的光电性能进行了测试评估。电路测试结果符合理论设计预期,成像效果良好,像素具备积分可调和全局快门功能,最终实现的像素规模为512×256,像元尺寸为30μm×30μm,最大满阱电子为400 ke^(-),FPN小于0.2%,动态范围为72 dB,帧频为450 f/s,相邻10 nm波段范围内量子效率相差小于10%,可满足高光谱成像系统对CMOS成像器件的要求。  相似文献   
2.
This review examines the application, limitations, and potential alternatives to the Hagberg–Perten falling number (FN) method used in the global wheat industry for detecting the risk of poor end-product quality mainly due to starch degradation by the enzyme α-amylase. By viscometry, the FN test indirectly detects the presence of α-amylase, the primary enzyme that digests starch. Elevated α-amylase results in low FN and damages wheat product quality resulting in cakes that fall, and sticky bread and noodles. Low FN can occur from preharvest sprouting (PHS) and late maturity α-amylase (LMA). Moist or rainy conditions before harvest cause PHS on the mother plant. Continuously cool or fluctuating temperatures during the grain filling stage cause LMA. Due to the expression of additional hydrolytic enzymes, PHS has a stronger negative impact than LMA. Wheat grain with low FN/high α-amylase results in serious losses for farmers, traders, millers, and bakers worldwide. Although blending of low FN grain with sound wheat may be used as a means of moving affected grain through the marketplace, care must be taken to avoid grain lots from falling below contract-specified FN. A large amount of sound wheat can be ruined if mixed with a small amount of sprouted wheat. The FN method is widely employed to detect α-amylase after harvest. However, it has several limitations, including sampling variability, high cost, labor intensiveness, the destructive nature of the test, and an inability to differentiate between LMA and PHS. Faster, cheaper, and more accurate alternatives could improve breeding for resistance to PHS and LMA and could preserve the value of wheat grain by avoiding inadvertent mixing of high- and low-FN grain by enabling testing at more stages of the value stream including at harvest, delivery, transport, storage, and milling. Alternatives to the FN method explored here include the Rapid Visco Analyzer, enzyme assays, immunoassays, near-infrared spectroscopy, and hyperspectral imaging.  相似文献   
3.
Upconversion nanoparticles (UCNPs) doped with lanthanides can convert near-infrared excitation into UV and visible emissions. Because of their relatively high emission efficiency, UCNPs are appealing materials for use in a variety of sectors. UCNPs are known for low auto-fluorescence, excellent chemical and thermal photo-stability, deep tissue penetration, exceptional biocompatibility, low toxicity, color purity, and ease of surface functionalization. In this review, we explain a few recent strategies to boost the efficiency and luminescence of upconversion nanoparticles and minimize quenching by fabricating them as core/shell, nanofibers, or heavily doped lanthanides. Applications of UCNPs in drug delivery, Photodynamic therapy (PDT), biosensors, bioimaging, and optogenetics are also discussed along with their mechanism of action. Our motivation for this review is to understand the working mechanism of UCNPs and their applications in various fields.  相似文献   
4.
5.
Halide perovskites are a versatile class of semiconductors employed for high performance emerging optoelectronic devices, including flexoelectric systems, yet the influence of their ionic nature on their mechanical behavior is still to be understood. Here, a combination of atomic-force, optical, and compositional X-ray microscopy techniques is employed to shed light on the mechanical properties of halide perovskite films at the nanoscale. Mechanical domains within and between morphological grains, enclosed by mechanical boundaries of higher Young's Modulus (YM) than the bulk parent material, are revealed. These mechanical boundaries are associated with the presence of bromide-rich clusters as visualized by nano-X-ray fluorescence mapping. Stiffer regions are specifically selectively modified upon light soaking the sample, resulting in an overall homogenization of the mechanical properties toward the bulk YM. This behavior is attributed to light-induced ion migration processes that homogenize the local chemical distribution, which is accompanied by photobrightening of the photoluminescence within the same region. This work highlights critical links between mechanical, chemical, and optoelectronic characteristics in this family of perovskites, and demonstrates the potential of combinational imaging studies to understand and design halide perovskite films for emerging applications such as photoflexoelectricity.  相似文献   
6.
Chloroquine (CQ) is an antimalarial drug known to inhibit autophagy flux by impairing autophagosome–lysosome fusion. We hypothesized that autophagy flux altered by CQ has a considerable influence on the lipid composition of endothelial cells. Thus, we investigated endothelial responses induced by CQ on human microvascular endothelial cells (HMEC-1). HMEC-1 cells after CQ exposure were measured using a combined methodology based on label-free Raman and fluorescence imaging. Raman spectroscopy was applied to characterize subtle chemical changes in lipid contents and their distribution in the cells, while the fluorescence staining (LipidTox, LysoTracker and LC3) was used as a reference method. The results showed that CQ was not toxic to endothelial cells and did not result in the endothelial inflammation at concentrations of 1–30 µM. Notwithstanding, it yielded an increased intensity of LipidTox, LysoTracker, and LC3 staining, suggesting changes in the content of neutral lipids, lysosomotropism, and autophagy inhibition, respectively. The CQ-induced endothelial response was associated with lipid accumulation and was characterized by Raman spectroscopy. CQ-induced autophagosome accumulation in the endothelium is featured by a pronounced alteration in the lipid profile, but not in the endothelial inflammation. Raman-based assessment of CQ-induced biochemical changes offers a better understanding of the autophagy mechanism in the endothelial cells.  相似文献   
7.
为了解决传统标板拍摄测试广角镜头成像畸变的不准确、复现性差问题,提出了基于调制传递函数(MTF)理论的成像畸变测试方法。通过研究镜头畸变测试国内外的研究现状,重点分析了成像镜头特别是广角镜头采用传统标板拍摄测试成像畸变的缺陷。提出了一种通过测试镜头轴上有效焦距和不同角度的离轴有效焦距,并导入畸变计算公式从而得到镜头成像相对畸变的MTF测试方法。研究结果表明,采用MTF测试方法可以实现对镜头成像畸变的快速、准确的测量。  相似文献   
8.
Magnetic skyrmions are topologically nontrivial spin structures, and their existence in ferromagnetically coupled multilayers has been widely reported with a disordered arrangement. Here, a nucleation scenario of ordered skyrmions in nanostructured synthetic antiferromagnetic (SAF) multilayers is proposed and experimentally demonstrated using direct magnetization imaging, indirect magnetometer and magnetoresistance measurement, and micromagnetic simulation. Instead of relying on Dzyaloshinskii–Moriya interaction, the antiferromagnetic interlayer exchange coupling in the SAF multilayers fulfills the role of nucleation and stabilization of skyrmions. The robustness of the proposed skyrmion nucleation scenario is examined against temperature from 4.5 to 300 K and device size from 400 to 1200 nm. Interestingly, these synthetic skyrmions still behave well with a size less than 100 nm. The higher stability than generic magnetic domains can be attributed to topological protection. The results thus provide an artificial skyrmion platform to meet the functional needs of high density and designable arrangement in magnonic and spintronic applications.  相似文献   
9.
本文验证了基于Micromegas探测器的宇宙线缪子散射成像系统进行快速核材料检测的可行性,并对实验室宇宙线缪子成像系统原型进行参数估算。基于Geant4程序开发了用于模拟宇宙线缪子物理过程、传输径迹及Micromegas探测器响应的模拟程序。在模拟数据的基础上,实现并改进了两种主要的宇宙线缪子散射成像算法。根据模拟和成像结果,1 m×1 m成像系统可在10 min内检测到被重元素屏蔽的核材料。10 cm×10 cm成像系统的缪子事例触发率为0.16 s-1,要获得较为清晰的成像结果,要求探测器位置分辨率达到300 μm,探测器增益为1 000时实际测量事例至少需要20 h。  相似文献   
10.
Deep learning has gained a significant popularity in recent years thanks to its tremendous success across a wide range of relevant fields of applications, including medical image analysis domain in particular. Although convolutional neural networks (CNNs) based medical applications have been providing powerful solutions and revolutionizing medicine, efficiently training of CNNs models is a tedious and challenging task. It is a computationally intensive process taking long time and rare system resources, which represents a significant hindrance to scientific research progress. In order to address this challenge, we propose in this article, R2D2, a scalable intuitive deep learning toolkit for medical imaging semantic segmentation. To the best of our knowledge, the present work is the first that aims to tackle this issue by offering a novel distributed versions of two well-known and widely used CNN segmentation architectures [ie, fully convolutional network (FCN) and U-Net]. We introduce the design and the core building blocks of R2D2. We further present and analyze its experimental evaluation results on two different concrete medical imaging segmentation use cases. R2D2 achieves up to 17.5× and 10.4× speedup than single-node based training of U-Net and FCN, respectively, with a negligible, though still unexpected segmentation accuracy loss. R2D2 offers not only an empirical evidence and investigates in-depth the latest published works but also it facilitates and significantly reduces the effort required by researchers to quickly prototype and easily discover cutting-edge CNN configurations and architectures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号